Test Tips:

- Write all answers in complete sentences.
- When using a calculator to solve a problem, you must include calculator talk.
- ALWAYS draw a graph or distribution.

•

Normal Distributions: Chapter 2

What to Study: To be successful on this section of the final, the student will

- Z-scores
 - Define in context
 - How to calculate
 - Using z-scores to compare two or more items.
- Percentiles
 - o How to find a percentile
 - o Define in context
- Ogive Graphs
 - o Identify a percentile
 - o Estimate the IQR
- Normal model
 - o Draw a model N(mean, standard devation)
 - o 68-95-99.7 Rule
 - Find any area under the curve (Normalcdf)
 - Find a value given an area (InvNormal)
 - Show all work "Calculator Talk"

Vocabulary:

- percentiles
- · cumulative relative frequency graphs
- z-scores
- · transforming data
- density curves
- · median of density curve
- transform data
- mean of density curve
- standard deviation of density curve
- Normal curves

- Normal distributions
- 68-95-99.7 rule
 - $N(\mu,\sigma)$
- standard Normal distribution
- standard Normal table
- Normal probability plot
- μ (mu)
- σ (sigma)

AP/Dual Enrollment Statistics Final Review

Problems to Review:

1. For each problem below draw a picture of the normal curve and shade the area you have to find. Let Z represent a variable following a standard normal distribution.

a) Find the proportion that is less than z=2.00.

Ncof (bw=999, high= 2, mean=0, std=1)=1.9

Ncdf (low = -.13, high = 1.75, mean = 0, std = 1) { z = 1.75.

Find the proportion that is greater than z=1.86. $NCDF(low = 1.86, high=99^9, mean=0, std=1) = .031$

d) Find the z-score for the 64th percentile.

Inv N (. Barea = . 64, mean = 0, std=1) 7.358

e) Find the z-scores that bound the middle 50% of all data

Lower # = INVN (area = .25, mean = 0, std = 1) = -.674 Upper# = InvN(avea = .75, mean=0, std=1) + .674

- InvN (area=.24, man=0, std=1)=1-,706
- 2. Former ISU basketball player Kelvin Cato is 83 inches tall. Assuming that heights follow approximately a normal distribution with mean 70 and standard deviation $\sigma = 3$,
 - a) what is his corresponding z-sco

70 76 64 67 (0) b) what proportion of men are taller than him? Ncdf (100=83, high=999) mean=70, std=3,

AP/Dual Enrollment Statistics Final Review

3. Since the length of a downhill ski is related to the height of the individuals renting them, it is fair to assume that a normal distribution would describe the length of women's skis at rental outlets in Colorado. The mean of the distribution is 150 cm and the standard deviation is 10 cm.

- a) What is the proportion of women's ski lengths that are less than 130 cm? Ncdf (10w = -999, high = 130, mean = 150, sd=10)
- b) What is the proportion of women's ski lengths that are greater than 125 cm? $\frac{1}{2}$ Ncdf (10w = 125, $\frac{1}{2}$, $\frac{1}{2}$,
- c) What is the proportion of women's ski lengths that are between 125 and 155? Ncdf(low = 125), high = 156 man = 150, Stal = 10) = 150
- d) Very long skies are expensive and there are not many people who rent them. What is the longest women's ski a rental shop should carry so that only 2 percent of the costumers will ask

4. The BMI for males age 20 to 74 is follows approximately a normal distribution with mean μ = 27.9 and standard deviation σ = 7.8. Use the 68-95-99.7 rule to find

a) the percentage of males with BMI less than 20.1.

Nedf (
$$low = -999$$
 high = 20.1, mean=27.9, $std = 7.8$) = $lower = 159$

b) the percentages of males with BMI greater than 12.3.

c) the BMI values that correspond to the middle 99.7% of the distribution.

d) the value such that 0.15% of males have BMI's greater than the value

